Dendritic branch typing and spine expression patterns in cortical nonpyramidal cells.
نویسندگان
چکیده
To understand the dendritic differentiation in various types of cortical nonpyramidal cells, we analyzed quantitatively their dendritic branching and spine expression. The dendritic internode and interspine interval obeyed exponential distributions with type-specific decay constants. The initial branching pattern, internode interval and spine density at the light microscopic level divided nonpyramidal cells into three dendritic types, correlated with axonal, neurochemical and firing types. The initial branching pattern determined the overall vertical spread of dendrites. Basket cell subtypes with different firing and chemical expression patterns were distinct in the vertical and horizontal spatial spread, providing diverse input territories. Internode densities of dendritic spines, as well as those of axonal synaptic boutons, did not correlate with the tortuosities and intervals, suggesting a tendency to distribute synapses homogeneously over the arbor. Dendritic spines identified at the electron microscopic level were different in length and shape among subtypes. Although the density was lower than that of pyramidal cells, spines themselves were also composed of several morphological types such as mushroom and multihead ones, which were expressed differentially among subtypes. Correlation of dendritic branching characteristics with differences in spine structure suggests distinct ways to receive specific inputs among the subtypes.
منابع مشابه
Regulation of Dendritic Growth and Remodeling by Rho, Rac, and Cdc42
The acquisition of cell type-specific morphologies is a central feature of neuronal differentiation and has important consequences for nervous system function. To begin to identify the underlying molecular mechanisms, we have explored the role of Rho-related GTPases in the dendritic development of cortical neurons. Expression of dominant negative mutants of Rac or Cdc42, the Rho-inhibitory mole...
متن کاملBrain-derived neurotrophic factor mediates activity-dependent dendritic growth in nonpyramidal neocortical interneurons in developing organotypic cultures.
Brain-derived neurotrophic factor (BDNF) promotes postnatal maturation of GABAergic inhibition in the cerebral and cerebellar cortices, and its expression and release are enhanced by neuronal activity, suggesting that it acts in a feedback manner to maintain a balance between excitation and inhibition during development. BDNF promotes differentiation of cerebellar, hippocampal, and neostriatal ...
متن کاملEvaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells
Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Bloo...
متن کاملCocultured, but not isolated, cortical explants display normal dendritic development: a long-term quantitative study.
Dendritic growth has been studied in long-term organotypic neonatal rat occipital neocortex grown either apart as isolated explants or in tandem as cocultures. Quantitative light microscopic measurement of dendritic and axonal branching patterns within the cortical slice was accomplished using rapid Golgi stained materials. In both isolates and cocultures the overall cellular organization of th...
متن کاملIncreased dendritic spine densities on cortical projection neurons in autism spectrum disorders.
Multiple types of indirect evidence have been used to support theories of altered cortical connectivity in autism spectrum disorders (ASD). In other developmental disorders reduced spine expression is commonly found, while conditions such as fragile X syndrome show increased spine densities. Despite its relevance to theories of altered cortical connectivity, synaptic spine expression has not be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cerebral cortex
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2006